A Computers and the Humanities 33: 49-57, 1999,
© 1999 Kluwer Academic Publishers. Printed in the Netherlands.

Using the TEI Writing System Declaration (WSD)

DAVID J. BIRNBAUM', MAVIS COURNANE?* and PETER FLYNN?*

| Department of Slavic Languages and Literatures, University of Pittsburgh, 1417 Cathedral of
Learning, Pittsburgh, PA 15260, USA (E-mail: djb@ clover.slavic.pitt.edu); 2Computer Center, Kan
Building, University College Cork, Ireland: 3 E-mail: cournane@imbole.ucc.ie; *E-mail:

pftynn@ imbole.uce. ie

Abstract. The TEI's WSD mechanism allows text encoders to document the nature and use of
language scripts for a given document or class of documents, but these facilities have not been widely
implemented.

This paper describes two implementations which use different approaches, both for encoding
and for rendering, and draws some conclusions about the need for improving the utility of WSDs for
scholarly texts.

Key words: character, Cyrillic, glyph, Greek, Hebrew, Latin, Slavic, Slavonic, TEI, TgX, Text Encod-
ing Initative, writing system declaration, WSD

1. The TEI WSD

According to P3, the Text Encoding Initiative (TEI) Writing System Declaration
(WSD) is ‘an auxiliary document which provides information on the methods
used to transcribe portions of text in a particular language and script” (Sperberg-
McQueen and Burnard, 1994, section 25). This suggests at least two potential core
functions for the WSD:

to document transcription methods in a human-readable form, so that those
who need to render, transform, or otherwise process the document will
understand the meaning of the encoded information, and

to support automated access to such representational information as the char-
acter codes and glyph identifiers associated with the characters and character
entities in PCDATA content.

The first of these goals, the documentation of transcription systems for the edi-
fication of anticipated human readers. is straightforward, and anyone conversant
with WSD architecture can examine a document and its accompanying WSDs and
work out the mapping employed to document different textual representations. The
second goal, however, the use of WSDs in automated transducing, rendering, and
other processing operations, is less accessible.

50 DAVID J. BIRNBAUM ET AL.

Despite the indisputable documentation and processing value of a formal writ-
ing system description, the WSD appears to be one of the least-used features
of the TEI guidelines. Thus, although a few WSDs are available as part of the
electronic TEI distribution, these pertain primarily to straightforward, normalized,
well-documented writing systems, and they apparently exist exclusively for docu-
mentation purposes, for we know of no projects other than our own where WSDs
of any sort are employed in automated document processing. That the WSD is
not in wide use is clear from examining the WSD support files available on the
TEI HTTP and FTP servers, where the teiwsd2.dtd file includes a declaration
for a we _;_'_.--_:'_. .ent system identifier. which is, in fact, misnamed on the servers as

That this error in the distribution could have gone unnoticed until
llk |11u.un suggests that these files have not been in significant demand by users.

One of the primary problems encountered in designing and implementing a
WSD, and especially in using a WSD for processing, is that the documentation
in the TEI Guidelines is in some respects insufficient. In particular, P3 provides
no practical example of an implemented WSD, just as it provides no information
about using a WSD to generate a legible final-form document without sacrific-
ing document portability. Production of final-form documents requires mapping
between characters and glyphs, and the fact that most applications still exist in a
pre-Unicode universe makes this task all the more problematic.

A second fundamental practical problem with implementing WSDs is that there
is no software currently available that can manipulate them automatically, The
proper display of Hebrew or Greek or Cyrillic character sets in a character-mode
SGML editor such as Emacs (psgml-mode) is elusive because of the editor’s lim-
ited facility for character replacement. Some graphical SGML editors do permit
the specification of a particular font for the display of particular elements and
attributes, and this should, in llu'-ur'_\', enable Hebrew and Greek and Cyrillic entities
such as Hebrew &vavhb;, Gree cgr;, or early Cyrillic &aos; to be rendered
with the correct fonts. Unf U]Elmd{k_l\ not all t'r‘nplmdl SGML editors provide this
facility of entity replacement from attributes.! SGML browsers such as SoftQuad’s
Panorama Pro permit entity substitution in the before and after replications of
attribute values, which means that in these browsing environments attribute values
may invoke a specific font that produces the desired substitution, but in these cases
it is the character entity set declared in the main SGML document, rather than

the more powerful Writing System Declaration, that governs that substitution.’

Alongside these screen-rendering problems, attempts to print an SGML file con-
taining Hebrew or Greek or Cyrillic characters are frustrated by the absence of
print-rendering software capable of processing the WSDs unaided.

A WSD-type approach to encoding documents based on orthographically com-
plex writing systems was introduced in an article by David J. Birnbaum in
Computer Standards and Interfaces 18 (1996). The principal goal of the present
paper is to provide a practical complement to that theoretical discussion, illus-
trating how the authors have used WSDs to support not only the encoding and

USING THE TEI WRITING SYSTEM DECLARATION (WSD) 51

documentation, but also the transformation of TEIl-conformant documents. One

test file is based on transcriptions from several early Cyrillic manuscripts; the

other is a multilingual manuscript transcription involving hellenized Hebrew and
latinized Greek in a Latin context. The transformation system used for all tests
was Omnimark Technology’s Omnimark LE (version 3), although several different
transformation algorithms were applied to the sample input files:

parse the WSD, build an in-memory replacement table, and access the table to
replace information in the SGML source file with information from the WSD:
parse the WSD, write out a custom SDATA entity set with replacement strings
extracted from the WSD, and reparse the SGML source file to effect the
replacements;

parse the WSD, build an external I4TEX replacement file, and let ISTEX effect
the string replacements.

2. Characters, Glyphs, and SDATA Character Entities

The WSD-related issues discussed below were common to all of our test docu-
ments, but the Cyrillic materials required an additional step not needed for the
others: the absence of any standardized early Cyrillic SGML SDATA entity set
standards required that we develop such an entity set alongside our WSD.? In the
present instance, the early Cyrillic entity set is called chsl.ent, and consists of
lines of the form

" L(._i'_ J "

11 letter a, alternate (ear

In this example, we have chosen to use the character entity &aos; to represent a
particular early Cyrillic letter (where “a’ is the name of the letter and ‘os” stands
for *Old Slav[on]ic’)., and we have defined this entity’s SDATA replacement text
as the string [aos], following the namespace model used in the registered ISO
character entity sets in Annex D of the SGML standard. We then declare chsl

in the DTD subset of the main document with

adding the appropriate public entity entry to the SGML Open catalog file.

These steps enable the use of early Cyrillic entities in the document instance,
thus satisfying the basic encoding need, but they are not sufficient for render-
ing the document in any useful way. Because the WSD is not automatically
parsed along with the document, unless some special action is taken, SDATA

52 DAVID J. BIRNBAUM ET AL.

entities will simply be replaced by their replacement text as it appears in the
SDATA entity set. For example, the SDATA entity declarations in chsl.ent will
instruct a parser to substitute for an &aos; entity the declared [aos

ment string; an input string &pos; &00s; &vos; &jatos; &sos;&tos; &

thus be rendered [pos] [oos] [vos] [jatos] [sos

[fjeros]. Needless to say, we do not want this replacement string, which serves

only a documentation purpose, to appear in documents intended for Slavists, and a
different approach is required for rendering useful final-form documents.

If one is operating without a WSD, the most efficient way to cope with this
situation is to create a new set of entity declarations, removing the default replace-
ment text (such as [aos]) and substituting for it something that will be rendered
properly on a local system, such as a system-specific numerical character reference.
This is the “display entity set” discussed in Goldfarb (1990), 504. Technically, users
are not permitted to change or modify the file referenced by a public identifier, and
if one uses a display entity set in place of the canonic ISO SDATA entity set, one
is expected to change the public identifier accordingly. One might argue, however,
that changing the file referenced by a public identifier does not make the SGML
document itself nonconforming because the unparsed document is not changed,
and it continues to include the canonic public identifier reference for the standard
SDATA entity set. There is nothing sacrosanct, or even particularly useful, about
the replacement text in the ISO registered entity sets, and the value of the ISO
registered entity sets is not that they standardize replacement text that may appear
in a final form document, but that they standardize the inventory and names of
common constituents (primarily characters) of basic writing systems.* If, as in our
projects, one uses a WSD to support the generation of final form output, the default
character entity sets may be left as they are, and the desired local replacement text
may be specified in the WSD. This strategy is discussed below.

A sample character entity description in an early Cyrillic WSD looks like:

<character

strin

a, alternate

In this example, we declare that the entity &aos; corresponds to a particular
standardized ISO 10646 (UCS-4, Unicode) character, that this character may be
represented only by an entity (not by a string), and that it should be rendered
with the glyph standardized under AFII (Association for Font Information Inter-
change) code 10993. Unlike the bare SDATA entity set, which specifies a single
replacement string for each declared character entity, the WSD associates separate
character and glyph information with each entity. This flexibility is valuable when

USING THE TEI WRITING SYSTEM DECLARATION (WSI)

dealing with writing systems that do not observe a strict one-to-one correspondence

of characters (units of information) and glyphs (units of presentation), i.e., writing

systems where the same underlying letter may be written in different ways, or

where the same written mark may represent more than one underlying letter. This

sort of many-to-many correspondence is precisely what one finds in early Cyrillic
o 5

writing.”

3. Sample A: Cyrillic

The early Cyrillic document used for the present exercise is a fragment of the Rus’
Primary Chronicle, the earliest East Slavic chronicle text, which purports to trace
the history of the world from the creation through the establishment and early years
of the Rurik dynasty in Kiev and other cities. The sample chosen for the purpose
of testing the WSD architecture is a single set of brief parallel readings from a
critical edition currently under preparation under the general editorship of Donald
Ostrowski, of the Harvard Ukrainian Research Institute, and encoded using the TEI
parallel-segmentation architecture, one line of which looks like:

<rdg wit='lav’'>&S0s;&e0s;

&Nos; &a0s5; &chos; &knos; &keos; &mos; &DJeros;

&pos; &00s; &vos;&jatos; &sos;&tos; &fjeros;

s &idecos; &juos; </rdg>

The early Cyrillic sample text used for this project benefits from two simplifying
assumptions, neither of which is necessarily true in the case of arbitrary early Cyril-
lic manuscript sources. First, we assume that in a critical edition of an early Cyrillic
work, all manuscript witnesses share a WSD. In fact, early Cyrillic was a supra-
national writing system with many local varieties, and a writing system for early
Bulgarian Church Slavonic documents (for example) might differ in several places
from one for early East Slavic documents. Second. more narrowly, we assume that
each manuscript observes a single, consistent WSD. In fact, early Cyrillic writing
was so poorly standardized that different scribes within the same manuscript might
use different inventories of early Cyrillic letters and observe different rules about
which letters functioned as variants of which others. If one views document encod-
ing as a way to make explicit one’s analysis of written sources, and WSD encoding
as a way to make explicit one’s analysis of the writing system(s) underlying these
sources, it would not be unusual for a single early Cyrillic document to require
different WSDs for different scribes, however inconvenient this might prove for
both encoding and subsequent analysis.

4. Sample B: Hellenized Hebrew and Latinized Greek

Our second test WSD platform is more complex: the eleventh-century Irish (Latin)
poem Adelphus Adelpha Mater not only includes non-ASCII (and non-Latin)

54 DAVID J. BIRNBAUM ET AL.

characters, but furthermore, employs these characters outside their usual writing
systems. Specifically, the Adelphus text is primarily in Latin, but it contains indi-
vidual words in transliterated hellenized Hebrew and latinized Greek.” The use
of Greek letters to render Hebrew text and Latin letters to render Greek text is
clearly different from the monolingual and monoalphabetic Slavic Cyrillic material
discussed above. but the fundamental encoding problem is comparable: researchers
need access to more information about the writing system than can be represented
comfortably in an SDATA entity set.

In the case of Adelphus Adelpha Mater (see Figure 1), it was decided to hard-
code the original Hebrew and Greek words into the poem via the markup.” This
encoding was achieved by modifying the TEI DTD to include a specification for the

attribute reg on the element <frn> (this is an abbreviation of the TEI's <for 1>
element for convenience in manual markup systems), which is used to identify

words in a foreign language. See Figure 1.

Figure .

In Figure 1, character entities for Hebrew and Greek are contained in the reg
attributes attached to the <frn> element. The element <frn> uses the lang attribute
to identify the languages concerned, with the values of either ‘he’ (Hebrew) or ‘el’
(Greek). These character entities are associated with a WSD in the TEIheader. See

Figure 2.

Figure 2.

As was noted above, the WSD, unlike the SDATA entity sets specified in the
DTD for the principal SGML document, provides not only a single replacement

USING THE TElI WRITING SYSTEM DECLARATION (WSD)

string, but also other mappings. For example, in the case of the Hebrew character
whose symbolic representation is ¢ hb; . it provides a formal UCS code 05D0
and an AFII code E140.

5. The WSD Meets Omnimark: Cyrillic

The mechanisms for encoding multilingual or complex monolingual texts, and for
developing the SDATA entity sets and WSDs that document those texts, are not
complicated, although. as noted above, they may prove somewhat cumbersome
due to the absence of specialized tools. The preparation of the main SGML docu-
ments, the SDATA entity sets, and the WSDs fulfills the first function of the WSD
mentioned earlier: to document the transcription system in a way that will provide
human readers with access to a structured description of this system. This type of
encoding fulfills fully the mandate of the Text Encoding Initiative, in that it yields a
text that has been encoded according to the TEI guidelines, but it does not provide
a document that can be rendered easily for use by colleagues who are not also
competent SGML engineers. In an attempt to make the SGML documents more
accessible to such colleagues, we undertook to process the WSD so as to provide
different views of orthographically-complex SGML documents.

Two general strategies were applied to the early Cyrillic test file:

parse the WSD into memory when it is mentioned in a general TEI document

and access an in-memory table for transformation, or

parse the WSD independently of any other TEI document to output differ-

ent SDATA entity sets, which may be saved as system entities and accessed

directly by any parser that supports SDATA entity replacement.

These strategies were applied to three types of problems:

generate and use character-level representations,
generate and use glyph-level representations, and

generate and use a mixed representation, which could be employed, for
example, to search according to characters but render with glyphs.

The inpul files, OmniMark scripts.”® and output files used in the ("yrillic por-
tion of this project are '1\.1|1Lthie on th World Wide Web at htty

6. Conversion to I¥TX: Hebrew

The strategy for Hebrew was to modify the TEI DTD by defining for the <frn>
element a reg attribute, which holds the regularized (Hebrew) character sequence
in an entity reference. This frees the content of the <frn> LIL”]L”I to hold the
transliterated Iulluwul HLhIL\\ of the source leumun so that -

results in ”]L re mlumt' ‘abg

DAVID 1. BIRNBAUM ET AL,

A short program was written using Omnimark to convert the SGML to IATEX for
printing. This program invokes the recursive function do sgml-parse to suspend
processing of the main document when the entity reference in the WSD attribute of
the <language> element is encountered, to process the WSD file itself, and then to
resume processing of the main document. This processing model enables the char-
acter entity names in the WSD to be interpreted and written out to disk to a style
file in I8TEXformat, so that they can be read in again during the IATgXprocessing to
implement the exact character encoding required for the font used.

As was noted in the case of Cyrillic, the WSD does not obviate the need for
the standard ISO Hebrew character entity set, which must also be present because
the character entity names in the WSD are in attributes declared as entity, which
means that the ISO declarations must exist at that point. Although, as noted above,
editing the ISO Hebrew character entity file to reflect the character encoding code
points might technically be a more direct method,

— this would require modifying a standard file that would normally be present
in the SGML processing system of any user who intends to process Hebrew,
and using the standard version of such SDATA character entity sets improves
portability by removing the need to attach a different, edited version to any
instance that is exchanged; and
the use of the WSD method provides for much better control over the encoding
specification, as well as allowing ancillary inline documentation.

The files associated with the Hebrew sample are available for inspection at

http://imbole.uce.ie/~pflynn/wsd/.

7. Conclusion: The Need for Dynamic WSD Processing

Omnimark coped successfully, and even elegantly, with all of the tasks it was set,
but the batch approach undertaken here is ultimately capable only of generating
multiple static views, without real support for dynamic inquiry. For example, there
are situations where a Slavist may wish to conflate glyphic variants of character
foo during searching, while maintaining a distinction between glyphic variants
of character bar, and the potential number of such hybrid views is for all prac-

tical purposes unlimited.” The strategies discussed here provide the user with

access to character-based, glyph-based, and mixed views of the input text, but
they do not support access to ad hoc combinations of character-level and glyph-
level information. The development of SGML tools capable of supporting dynamic
WSD access will greatly enhance the utility of WSDs for scholars who work with
orthographically complex writing systems.

USING THE TEI WRITING SYSTEM DECLARATION (WSD)

TECHNICAL ADDENDA

As this article goes to press, it should be noted that SoftQuad’s Author/Editor and

Panorama Pro SGML editing and display products, referred to in section 1, have
been acquired by Interleaf Corp.

The Omnimark conversion tool is now available in server form (Konstruktor),
which in theory means that dynamic enquiry could be combined with formatting
such as described here, in real time, but this method is currently untested for the
present texts.

Notes

' For example, Author/Editor, SoftQuad’s widely-used graphical SGML editor, does not support

this type of replacement.

> Panorama also supports SDATA entity replacement indirectly by way of an sdat:) file, which
associates not the SDATA entity name, but its replacement text. with font and glyph offset specifica-
tions.

As is the case with SGML documents in general, character entities included in the principal SGML
document instance must be declared in the DTD for the principal SGML document, since any WSD
specifications supplement, and do not replace, these basic entity declarations, For general background
see especially Harry Gaylord’s two essays on character entity sets and WSDs (1992, 1995) and
section 25 of P3 (Sperberg-McQueen and Burnard, 1994).

4 The format of a Formal Public Identifier as defined in ISO 8879 does allow for presentation-
specific variants. See also the discussion in DeRose (1997), 130-34.

5 See Birnbaum (996) for examples and discussion.

O The text is taken from a scholarly reconstruction of the poem by Dr. David Howlett (1995).

7 The authors are grateful 1o Professor Lewis M. Barth, Hebrew Union College, for his help in
identifying the Hebrew characters and for suggested corrections to the Hebrew words, and 1o Ms.
Sinead O Sullivan, St. Anne’s College. Oxford. for identifying the Greek characters.

5 Although we chose to implement our project in Omnimark, any system that can perform transfor-
mations of SGML documents. including the parsing of SUBDOC entities, could be used in its stead.

See Birnbaum (1996) for examples and discussion.

References

Birnbaum, D. J.: “Standardizing Characters, Glyphs, and SGML Entities for Encoding Early Cyrillic
Writing™. Computer Standards & Interfaces 18 (1996), 201-52.

DeRose, S. J.: The SGML FAQ Book, Boston, Dordrecht, London: Kluwer Academic Publishers,
1997.

Gaylord, H.; “Character Entities and Public Entity Sets (TEI TR1 W4)". Technical report, Author,
Groningen, 1992.

Gaylord, H.: “Character Representation”. Computers and The Humanities 29(2) (1995), 51-73.

Goldfarb, C. E.: The SGML Handbook, Oxford: Clarendon Press, 1990,

Howlett, D.: “Five Experiments in Textual Reconstruction and Analysis”. Peritia: Journal of the
Medieval Academy of Treland 9, 1995,

Sperberg-McQueen, C. and L. Burnard: “Guidelines for Electronic Text Encoding and Interchange
(TEI P3)”. Technical report, ACH/ACL/ALLC Text Encoding Initiative, Chicago and Oxford,
1994.

