
EVT 2.0 - User Manual

For EVT 2js beta2

Work in progress

1. Introduction

1.1 About EVT

1.2 How it works

1.3 Main features

1.4 EVT User Interface

2 A short guide to EVT

2.1 Installation and management of the edition data

2.1.1 Images

2.2 Configuration

2.3 CSS Customization

3. TEI encoding of textual data

3.1 TEI Header

3.2 Text structure

3.2 Diplomatic edition

3.2.1 Facsimile

3.2.2 Parallel Transcription

3.2.3 Support for named entities

Edition levels

3.3 Critical editions

4. Other features

4.1 VisColl: describing and visualizing the manuscript quire structure

4.2 3DHOP

5. Sample editions

EVT use

Feedback

References

1. Introduction

1.1 About EVT

EVT (Edition Visualization Technology) is a light-weight, open source tool specifically
designed to create digital editions from texts encoded according to the ​TEI XML schemas
and Guidelines​, freeing the scholars from the burden of web programming and enabling the
final users to browse, explore and study digital editions by means of a user-friendly interface.

This tool was born in the context of the ​Digital Vercelli Book project, in order to allow the
creation of a digital edition (which has been available in beta form for more than two years)
of the Vercelli Book, a parchment codex of the late tenth century, now preserved in the
Archivio e Biblioteca Capitolare of Vercelli and regarded as one of the four most important
manuscripts of the Anglo-Saxon period as it regards the transmission of poetic texts in the
Old English language. However it has evolved into a tool suitable to fit different texts and
needs. For example, it is now being used to publish the digital edition of the ​Codice
Pelavicino manuscript​, a medieval codex preserving charters dating back to the XIII century.
The continuous development and need to adapt it to different types of documents and
TEI-encoded texts has shifted the development focus towards the creation of a more general
tool for the web publication of TEI-based digital editions, able to cater for multiple use cases.

The entire structure of the software has been remodeled, in order to make it lighter, more
usable and more adaptable; we decided to use the Model View Controller (MVC) approach,
that is a very common architectural pattern in object-oriented programming, that allows to
separate the logical presentation of the data, from the application logic and the processing
core. Wanting to maintain the original feature of EVT, and therefore do not give up the client
only approach, we decided to use ​AngularJS​, a JavaScript framework inspired by the MVC
programming logic, especially suitable for the development of client-side Web applications;
among other things, this framework allows to define custom HTML components and use the
data-binding mechanism to associate the model of the data to the UI elements, and manage
the updates of the latter avoiding the direct DOM manipulation.

1.2 How it works

Before the refactoring, EVT was composed of two main units: EVT Builder, for the
transformation of the encoded text using special XSLT 2.0 templates, and EVT Viewer, for
the visualization into a browser of the results of the transformations and the interaction with
them. The idea under the new version of EVT is instead to leave to EVT Viewer the task of
reading and parsing with JavaScript functions the encoded text, and “save” as much as

http://evt.labcd.unipi.it/
http://www.tei-c.org/Guidelines/P5/
http://www.tei-c.org/Guidelines/P5/
http://www.tei-c.org/Guidelines/P5/
http://vbd.humnet.unipi.it/
http://vbd.humnet.unipi.it/
http://pelavicino.labcd.unipi.it/
http://pelavicino.labcd.unipi.it/
http://pelavicino.labcd.unipi.it/
https://angularjs.org/
https://angularjs.org/

possible within a data model, that persists in the client main memory, and is organized in a
way that allows a very quick access to the data in case of need. This has obviously led to the
elimination of the EVT Builder level, and therefore it allows to open a digital edition directly
in the browser without any previous XSLT transformation.

Please note that starting from version 67 Firefox developers adopted the same
security-conscious policy chosen by developers of Chrome and other Web browsers, that is
forbidding loading local files (= documents available on the user’s computer drive) in the
browser as a result of the execution of Javascript programs. The goal is to improve global
security when browsing the Web, but the unpleasant collateral effect is that of preventing the
loading of digital editions based on EVT, or similar software, from local folders. Fortunately
there are several workarounds that can be used to test EVT editions that are located on your
hard drive:

● option no. 1: launch Chrome from the command line with the
--allow-file-access-from-files parameter​, after that you can press
CTRL+O to open the ​index.html file, or you can just drag and drop it on
Chrome’s window; this is probably the most simple way to do it;

● option no. 2: download and install Firefox ESR v. 60: this version predates the new
security policy adopted in FF v. 67 and, furthermore, it can be installed in parallel
with any other version of Firefox;

● option no. 3: install an extension providing a local web server on Firefox or Chrome,
f.i. there is ​this one​ available for Chrome.

This problem, however, only affects local testing, after the edition has been uploaded on a
server there are no problems in accessing it with any of the major browsers.

1.3 Main features

At the present moment EVT can be used to create both diplomatic and critical editions with
multiple levels of apparatuses, encoded using ​the TEI Parallel Segmentation Method​. This
means that e.g. a diplomatic transcription or a critical edition encoded according to the TEI
Guidelines should already be compatible with EVT 2, or require only minor changes to be
made compatible.

Among the main features you will find:

● Critical edition support​. Enlarged critical apparatus, sources apparatus and
analogues apparatus, variant heat map, witnesses collation and variant filtering are
some of the main features developed for the critical edition support.

● Bookmark​. Direct reference to the current view of the web application, considering
view mode, current document, page and edition level, eventual collated witnesses and
selected apparatus entry.

https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TC.html#TCAPPS

● Named entities and lists of entities​. Each named entity can be highlighted in the text,
opened to browse available information and searched in dedicated lists.

● VisColl support​. The ​VisColl XSLT stylesheets have been integrated and adapted so
that you can create and explore the quire structure of a manuscript.

● 3DHOP support​. An initial, experimental support for the ​3DHOP software has been
added to EVT.

● Interactive bibliography​. User can visualize the bibliography of the edition and
reorder the entries by author, publisher or publishing date.

● High level of customization​. The editor can customize both the user interface layout
and the appearance of the graphical components.

2 A short guide to EVT

EVT 2 can be used to prepare an edition right away, immediately after installing it on your
hard drive: see the ​Installation and management of the edition data section first, then
Configuration​, to understand how EVT works and how you can use it to publish your
editions. A more detailed guide will be published separately, as a reference manual, and will
also include instructions about customization.

If, on the other hand, you are interested in ​developing a specific functionality in EVT 2, or in
modifying an existing one, we suggest that you download and install the ​Development
framework​. The ​README.md contained in it explains how to install and configure the
development framework needed for this purpose. This step is only needed if you want to start
working with EVT source code, so it is in no way necessary for basic users.

2.1 Installation and management of the edition data

Installation is quite simple, download the compressed archive from EVT home page, unzip it
in a suitable location on your hard drive, and you are ready to use it with your edition files.
Within the main folder there are only two folders which should be modified by the user:

● config​: here you’ll find the config.json file which is the main configuration file for
EVT, but also custom-style.css where you can add your custom CSS rules for TEI
elements visualisation (see below sections 2.2 and 2.3);

● data​: here go all of your edition data, including the TEI-encoded documents,
images, and other edition .

Everything else should not be modified, unless you know what you are doing very well. It is
in fact possible to modify the JavaScript parsers, but doing so directly in an EVT installation

https://github.com/KislakCenter/VisColl/
http://www.3dhop.net/
https://github.com/evt-project/evt-viewer
https://github.com/evt-project/evt-viewer
https://github.com/evt-project/evt-viewer

is less efficient than doing it on a GitHub repository: since EVT is an open source tool you
are welcome to fork it on GitHub and change the existing parsers and/or add your own
parsers.

Before moving to the configuration step (section 2.2) you should copy the different edition
components in the ​data​ folder and sub-folders, this is how your files should be organized:

● your encoded edition document must be copied in the ​data/text directory,
actually EVT comes with a default directory structure, distinguishing between images,
text and other types of data:

data/images put your images here, you will find some sub-folders (e.g.
data/images/single​, ​data/images/hotspot etc.),
create more if needed

data/models put your 3D models here, again you will find ​multires and
singleres​ subfolders

data/text put your textual data here, note that there are some subfolders
already:
documents
schema
sources

and more may be added as needed (e.g. ​witnesses​)
data/viscoll put all VisColl-related files here

You can modify this structure as desired, provided that the appropriate paths are
specified in the configuration file (​config.json​, see below) and that all user data
is added within the ​data​ folder;

● to have your edition parsed and loaded by EVT you have to point to it explicitly
modifying the ​config.json file in the ​config directory and specifying the name
of the main file:

"dataUrl": "data/text/My_edition.xml",

While this is the most important configuration option, since it tells EVT where to start
with your edition, note that there are several other options available in that file, so that
you can customize the layout and appearance of your edition (see section 2.2). Also
note that some configuration options may be necessary to make desired features
available, for instance to add the required edition level, so make sure you read the
following section and check the default configuration file.

● optionally, you can add your own CSS instructions to modify the appearance of
specific TEI elements by editing the ​config-style.css file in the ​config
directory. See below section 2.3.

2.1.1 Images

EVT supports the most common image formats thanks to the embedded viewer,
OpenSeaDragon. An experimental version with support for large images using the tiling
method has been created successfully, but it will be integrated in the main development tree
at a later moment.

The miniature images shown in the thumbnail view are generated automatically from the 1

main images used to show the manuscript folios besides the transcription or edited text: it is
important to tell EVT where to find them, which is done by writing the correct path as a value
for the ​singleImagesUrl configuration parameter, the default path is to
data/images/single​ (see below section 2.2).

Synchronization of image and text at page level, for diplomatic editions, works thanks to the
@facs attribute in page elements (​<pb/>​), see 3.3.2 for an example. To link text and image
at line level, or to create hotspots leading to pop-up windows on the image itself will require
a ​<facsimile>​ element holding ​<surface>​s and ​<zone>​s, see 3.3.1.

2.2 Configuration

There are several configuration options, ranging from the folders where edition data is stored
to User Interface layout and available tools, that can be set by editing the ​config.json file
in the ​config directory. Below you will find a detailed list of the available options: in the
file you will see a list of options on the left, to configure EVT you will have to insert the
appropriate values in the textual fields on the right. Sometimes those values will consist of
boolean strings (“true” or “false”), sometimes they will be simple character strings (e.g.
"Interpretative edition"), in other cases you will have to enter TEI XML elements (e.g. ", ");
for colors it will be necessary to specify the correct RGB values (e.g. "rgb(108, 145, 207)").

If you find this file difficult to read and/or change you can try out the beta
EVT2-Config-Generator​: upload the current config.json, change the parameters you need to
change and download the new ​config.json​. Note that this is the first version of the EVT2
Config tool, so there may be glitches and/or problems (some options may be missing, f.i.),
please report them to us.

1 Accessible through the corresponding button in the navigation bar or in the image frame if the latter is not
available.

http://evt.labcd.unipi.it/evt2-config/
http://evt.labcd.unipi.it/evt2-config/

Main edition data

Edition main information

● indexTitle​. Choose a title for your edition. If you leave it blank the default “EVT
Viewer” title will be shown.

● webSite​. If you specify an external web site there will be a link pointing to it.
● logoUrl​. You can also add a custom logo that will appear before the edition title:

just indicate the path to it; it can be a URL or a relative path: we suggest that you put
it into ​data​ and point to it (f.i. ​data/icons/myLogo.jpg​).

Source files

● dataUrl​. Indicate the file name of the XML file of your encoded edition. It can
point either to an internal folder or to an external online resource.

● sourcesUrl​. Indicate the file name of the XML file encoding the list of all the
bibliographic references for the sources apparatus. It can point either to an internal
folder or to an external online resource.

● analoguesUrl​. Indicate the file name of the XML file encoding the list of all the
bibliographic references for the analogues apparatus. It can point either to an
internal folder or to an external online resource.

● sourcesTextsUrl​. Indicate the folder where you intend to put the XML
containing the texts of external sources (if you have any).

● singleImagesUrl​. Indicate the folder where you intend to save the edition
images, default path is to ​data/images/single​.

● enableXMLdownload​. Decide if you want to enable the XML download (​true​)
or not (​false​).

VisColl files

● visCollTextUrl​. Currently unused, please ignore.
● visCollStyleUrl​. Currently unused, please ignore.
● visCollSvg​. Indicate the folder where you intend to save the SVG images

generated by the VisColl XSLT style-sheets, default path is to
data/viscoll/SVG/​. Note that you have to generate the images using an XSLT
2 processor, such as Saxon 9 (standalone product or within the Oxygen XML editor),
and copy them in this folder before publishing the edition.

● visCollImageList​. Indicate the path to the XML document holding the list of
the manuscript images, default path is to ​data/viscoll/[name of

document]​. This document is not in TEI XML format, see VisColl documentation
for more information.

● visCollDataModel​. Indicate the path to the XML document holding the
description of the manuscript quire structure, default path is to
data/viscoll/[name of document]​. This document is not in TEI XML
format, see VisColl documentation for more information, the version required is the
data model 2.

View modes

● defaultViewMode​. Select which view mode you want to your edition to open on.
Note that it must be an active mode!

● availableViewModes​. Select which view modes you want to be available in
your edition. You can deactivate a view mode either by deleting it or by setting the
property ​visible​ to ​false​ (suggested method).

Edition levels

● defaultEdition​. Select which edition level you want your edition to open on.
Note that it must be an active edition level!

● showEditionLevelSelector​. Decide if you want to display the edition level
selector (​true​) or not ​false​. This parameter is considered only if you select just
one edition level: if there are two or more edition levels available, the edition selector
will be always visible.

● availableEditionLevel​. Select which edition levels you want to be available
in your edition. You can deactivate a view mode both by deleting it and by setting to
false the property ​visible (the latter being the suggested method). If you select
just one edition level you can choose either to display the selector (with just one item)
or not by setting ​showEditionLevelSelector​ respectively to ​true​ or ​false​.

Edition navigation

● showDocumentSelector​. Select if you want to activate (​true​) or not (​false​)
the document selector, which allows the user to navigate an edition composed by
different documents.

● enableNavBar​. Select if you want to activate (​true​) or not (​false​) the
navigation bar at the bottom of the screen.

● initNavBarOpened​. If the navigation bar is active (see previous setting), sets its
initial status: with ​true it will be shown when the edition is loaded, with ​false it
will be hidden until the user decides to show it.

● thumbnailsButton​. Select if you want to activate (​true​) or not (​false​) the
thumbnail button in the navigation bar.

● viscollButton​. Select if you want to activate (​true​) or not (​false​) the
VisColl button in the navigation bar.

Generic tools

● toolPinAppEntries​. Select if you want to activate (​true​) or not (​false​)
the PIN tool, which allows the user to “save” apparatus entries or (named) entities in
order to reach them more quickly when you need them.

● toolImageTextLinking​. Select if you want to activate (​true​) or not (​false​)
the Image-Text Linking tool, which allow the user to connect line by line the
facsimile to the transcription. You will need to properly encode the ​zone and their
coordinates and have Image-Text among the available view modes. Note that this is
still a work-in-progress feature since we are still implementing the EVT 2 image
viewer.

Named entities

● namedEntitiesSelector​. Select if you want to activate (​true​) or not (​false​)
the (named) entities selector, which allow the user to highlight on the text one or more
specific (named) entitie(s).

● namedEntitiesToHandle​. Customize the list of available named entities to be
highlighted and to be shown among entities lists, by adding a new element in this list:
for each element you should define a ​tagName​, which is the XML tag that identify
the entity and a ​label that will be shown in the selector. If you don’t need an entity
that is already inserted in this list you can delete it or just use the property
available set to ​false (suggested choice). Note that EVT can work properly
only with ​persName​, ​placeName and ​orgName​; any other type of entity might
cause problems (hopefully not!). If you need a new kind of named entity to be
handled just notify the ​EVT Development Team​.

● otherEntitiesToHandle​. Customize the list of available entities to be
highlighted by adding a new element in this list: for each element you should define a
tagName​, which is the XML tag that identify the entity, a ​label that will be shown
in the selector and a ​color that will be used to highlight the entity within the text. If
you don’t need an entity that is already inserted in this list you can delete it or just use
the property ​available​ set to ​false​ (suggested choice).

Critical edition

Witnesses

● preferredWitness​. Indicate the sigla of your preferred witness; this will be used
everywhere if you forgot to encode the lemma for a particular variation of the text.

● skipWitnesses​. Indicate the siglas (divided by commas) of witnesses you want
to exclude from visualization.

● maxWitsLoadTogether​. Maximum number of witnesses which are going to be
shown at the same time.

Witnesses Group(s)

● witnessesGroups​. If you want, you can divide the readings of all critical
apparatus entries into groups. Each group should have a ​witnesses property
(mandatory) that indicates the siglas of witnesses within the group and a ​groupName
(optional) that indicates the name of group to be displayed (f.i. ​{ “groupName”:

“Group 1”, “witnesses”: “A, B, B1” }​).

Apparatuses

EVT 2 is able to handle multiple levels of apparatuses: critical entries apparatus, sources
apparatus and analogues apparatus. In "Reading view", all of them can be available both in
inline mode (the apparatus will appear within the text, right after the portion of text to which
it is connected) or in a separate box (there will be a container next to the main text where all
the entries will be shown and aligned to the text, whenever the user clicks on an entry). By
default, all the apparatuses will appear separately from the main text, but you can choose
which mode you prefer by setting to ​true (inline) or ​false (separate box) the following
parameters:

● showInlineCriticalApparatus​, for critical apparatus entries;
● showInlineSources​, for apparatus of sources;
● showInlineAnalogues​, for apparatus of analogues.
● showReadingExponent​, if you want to use an alphabetic exponent for critical

entries (​true​) or not (​false​).

Tools

● toolHeatMap​. Indicate if you want to include the Heat Map tool within the Critical
Edition box (​true​) or not (​false​). This tool gives the user an overview about text
variance.

Multiple recensions

● versions​. Here you can specify the @xml:id values used to distinguish between
different recensions (or versions), the first value entered corresponds to the version
used as critical text for the edition.

Advanced Settings

Tell the system how to recognize the data: indicate which XML tag you used for the encoding
of the different objects.

XML Tag usage configuration

● listDef​. List of Witnesses: element(s) you used to encode the lists of all the
witnesses or changes referred to by the critical apparatus (f.i. ​<listWit> or
<listChange>​). Please divide values using commas.

● versionDef​. Single witness: element(s) you used to encode a single witness or
change referred to within the critical apparatus (f.i. ​<witness> or ​<change>​).
Please divide values using commas.

● fragmentMilestone​. Fragment milestones: element(s) you used to indicate the
beginning (or resumption) and the end (or suspension) of the text of a fragmentary
witness (f.i. ​<witStart>​ or ​<witEnd>​). Please divide values using commas.

● lacunaMilestone​. Lacuna milestones: element(s) you used to indicate the
beginning and the end of a lacuna in the text of a mostly complete textual witness (f.i.
<lacunaStart>​ or ​<lacunaEnd>​). Please divide values using commas.

● notSignificantVariant​. Not significant variants: element(s) of attribute(s)
you used to encode variants that are not significant and you do not want to appear in
the main critical apparatus (f.i. ​<orig>​, ​<sic> or ​@type=orthographic​).
Please divide values using commas.

● quoteDef​. Quotes: element(s) used within the XML file to encode quotes for the
sources apparatus (f.i. ​<quote>​). Please divide values using commas.

● analogueDef​. Analogues: element(s) used within the XML file to encode passages
for the analogues apparatus. (f.i. ​<seg> or ​<ref[type=parallelPassage]>​).
Please divide values using commas.

Filters

● possibleLemmaFilters​. Possible lemma filters: attribute(s), divided by
commas, you want to consider as possible filters for lemmas (f.i. ​resp or ​cert​). If
you want, you can customize the color of each filter value in the tab "Colors"
(otherwise random colors will be used).

● possibleVariantFilters​. Possible variant filters: attribute(s), divided by
commas, you want to consider as possible filters for variants (f.i. ​type​, ​cause or

hand​). If you want, you can customize the color of each filter value in the tab
"Colors" (otherwise random colors will be used).

Colors

● variantColorLight and ​variantColorDark​. Generic variant Colors:
customize the highlight colors (both dark and light for selected and unselected entries)
for generic variants that do not have any specific metadata (or have metadata that are
not considered as filters). Default colors are ​rgb(208, 220, 255) (light) and
rgb(101, 138, 255)​ (dark).

● heatmapColor​. Heat Map Color: customize the highlight color for variants when
the heat map tool is activated (this will be the darkest color possible, that means the
color of entries with the highest variance level). Default color is ​rgb(255, 108,

63)​.
● variantColors​. Specific Variant Colors: customize the highlight color for each

value of each lemma filter you defined in ​possibleLemmaFilters and each
reading filter you defined in ​possibleVariantFilters​. If you do not define a
specific color, the system will use a random one.

Miscellaneous settings

Bibliography

● defaultBibliographicStyle​. Select which bibliographic style you want to
your edition to open on. Note that it must be an active bibliographic style!

● allowedBibliographicStyles​. Select which bibliographic style you want to
enable. Bibliographic styles will work properly if the system will find all needed
information encoded in you XML file. You can deactivate a bibliographic style either
by deleting it or by setting the property ​enabled​ to ​false​ (suggested method).

Search engine

● virtualKeyboardKeys​. Here you can specify special characters that will appear
as buttons in a virtual keyboard tied to the search engine. To add a special
character to the virtual keyboard write here the ​@xml:id value in the corresponding
<char>​ or ​<glyph>​ element between quotation marks (e.g. ​"amacr" for an a
with macron), separate values using commas.

Image viewer options

● imageViewerOptions​. Miscellaneous options for the image viewer, modify only
if you know what you're doing!

● imageNormalizationCoefficient​. The value of this parameter must be that
of the width of the manuscript images (in pixels), leaving the default value or setting a
wrong value may lead to text-image links malfunctioning (specifically, drawing the
wrong areas for linking on the images).

Languages

● languages​. Customize the languages you want to set as available for the
translation of the User Interface (just the UI!) by adding their codes in this list. At the
moment we support just english (​'en'​) and italian (​'it'​). If you want to add
support for a new language, just add a new ​*new_language_code*.json inside
the ​i18n directory and a ​*new_language_code*.png image inside the
images​ folder.

2.3 CSS Customization

The customization of generic and linear TEI element is very simple, even if EVT does not yet
consider them in the default visualization: in fact, the TEI elements which are not handled in
any particular way by EVT are always transformed into HTML elements with the TEI tag
name as class name. In this way, the customization is very easy: in the
custom-style.css file that you will find in the ​config folder just add a rule that
matches the tag name of the TEI element to style. F.i., a deletion encoded with the <​del>
element can be displayed with a line through the text just by adding the rule ​.del {

text-decoration: line-through; }​.

3. TEI encoding of textual data
EVT 2 supports both diplomatic transcriptions with the corresponding manuscript images, in
a way similar to the previous version (EVT 1), and critical editions encoded according to the
parallel segmentation method (experimental support for the double-end-point attached
method is under way and will be added to a future version).

3.1 TEI Header
The ​<teiHeader> element at the top of the XML file must be compiled according to

the standard TEI ​Guidelines​, providing all the necessary information about the project and its
curators. Note that if you decide to include one or more ​<msDesc> elements these will be
used to show information pertaining to the corresponding manuscripts in the image frame,
where the digitized manuscript images are shown.

Please also note that if you wish to take advantage of the support for named entities, this is
where you should insert the lists (e.g. ​<listPerson>​), this is explained in more detail in
the ​2.4 Support for named entities ​section.

3.2 Text structure
Documents parsed by EVT must conform to the TEI ​Guidelines with regard to the general

text structure of a work:
● <text> follows the ​<facsimile> element (if present) and holds the following

items:
○ <front> front matter (information about a text, regesto (diplomatic text

summary), etc.)
○ <body> actual text of the work encoded
○ <back> back matter (notes, comments, etc.)

● EVT also support the ​<group> element, so that you can have more than one <text>

in a single TEI document, which is perfect for miscellaneous manuscripts:

<text>

 <front> ​ [front matter for the whole document] ​</front>
 <group>

 <text>

 <front> ​ [front matter for the first text] ​</front>
 <body> ​ [body of the first text] ​</body>
 <back> ​ [back matter for the first text] ​</back>
 </text>

 <text>

 <front> ​ [front matter for the second text] ​</front>
 <body> ​ [body of the second text] ​</body>
 <back> ​ [back matter for the second text] ​</back>
 </text>

 ​... [more texts] ...
 </group>

 <back> ​ [back matter for the whole document] ​</back>
</text>

Note that you can also ​XInclude​ to keep the texts in separate TEI documents:

<text>

 <group>

 <xi:include ​ href ​= ​"vb/VB-21-SoulI.xml"
 ​xmlns:xi ​= ​" ​http://www.w3.org/2001/XInclude ​"
 ​xpointer ​= ​"VB_text_SoulI" ​/>

 <xi:include ​ href ​= ​"vb/VB-23-DOTR.xml"
 ​xmlns:xi ​= ​" ​http://www.w3.org/2001/XInclude ​"
 ​xpointer ​= ​"VB_text_DOTR" ​/>

 </group>

</text>

where the ​xpointer attribute holds the values of the ​xml:id for the <text>
element of the file specified in the ​href​ attribute.

● At the present moment, ​<front> content is limited to new, editor-curated
introductory material. ​<titlePage> and original text are not supported because all
the content of the ​<front> element will be displayed in the “Info” frame related to a
single text. This will be fixed in a following version.

● Within ​<body>​, text can be distributed into ​<div> elements which are then used to
navigate it, a navigation selector widget will be created automatically to show the
different parts of a work. The visible navigation labels are created according to this
scheme:

○ if the ​<div>​ element has a ​@type​ attribute, its value is saved and will be
shown with an uppercase first letter; otherwise a default ​Div.​ text will be
shown;

○ if the ​<div>​ element has a ​@subtype​ attribute as well, its value is going to
be added to the preceding separated by a "​-​", again with an uppercase first
letter;

○ a blank space will be added after the preceding;
○ after which the content of ​@n​ will be added, if this attribute has been used,

otherwise the number of the ​<div>​ parsed up until the current one plus 1.

So if only ​@n is used the resulting text division name in the navigation UI will be
Div. 1​.

http://www.w3.org/2001/XInclude
http://www.w3.org/2001/XInclude

3.3 Diplomatic edition

3.3.1 Facsimile
The ​<facsimile> element is where all the information necessary for image-text linking

is saved, both for hot-spot and for continuous linking (e.g. page or line level) purposes. Note
that you can do without this element in the transcription document, EVT will work and show
your texts at page level linking without the need of having a ​<facsimile> (see below
instructions about ​<pb/>​) or even if there are no images at all: in the latter case, to avoid
having an empty image frame just set the corresponding view mode (​"label":

"IMAGE_TEXT"​) to ​false​.

A ​<facsimile> holds as many ​<surface>​s as there are single side images. Each

<surface>​ may include:

• a ​corresp​ attribute pointing to the ​xml:id​ of the corresponding ​<pb/>​ element

<surface ​ xml:id ​= ​"VB_surf_104v" ​ corresp ​= ​"#VB_fol_104v" ​>

• a ​<graphic> element: this can include an ​url attribute pointing to a specific file

location, and other attributes, but at the present moment only is not used by EVT;

<graphic ​ width ​= ​"1200px" ​height ​= ​"1800px"
url ​= ​"../images/Vercelli-Book_104V_S_300dpi.jpg" ​/>

• a number of ​<zone> elements: these are optionally used to record the coordinates of

image areas corresponding to text elements and other metadata information, to do so
they require use of several attributes:

◦ ulx​,​ uly​,​ lrx​,​ lry cartesian coordinates of the image area
◦ rendition two possible values:​ Line​ (for line-by-line text-image linking)

and ​HotSpot​ (for image areas to be used in hotspots)
◦ xml:id the unique ID for the current ​<zone>
◦ corresp points to the corresponding ​<lb/>​ ID (i.e. line) in the text

transcription (OPTIONAL)

<zone ​ corresp ​= ​"#VB_lb_104v_01" ​ lrx ​= ​"1052" ​ lry ​= ​"211"
 ​rend ​= ​"visible" ​ rendition ​= ​"Line" ​ ulx ​= ​"261" ​ uly ​= ​"156"
 ​xml:id ​= ​"VB_line_104v_01" ​/>

Complete example:

<facsimile ​ xml:id ​= ​"VB_fac_dotr" ​>

<surface ​ xml:id ​= ​"VB_surf_104v" ​ corresp ​= ​"#VB_fol_104v" ​>
<graphic ​ height ​= ​"1800px" ​ width ​= ​"1200px"

 url ​= ​"immagini\Vercelli-Book_104V_S_300dpi.jpg" ​/>
<zone ​ corresp ​= ​"#VB_lb_104v_01" ​ lrx ​= ​"1052" ​ lry ​= ​"211"
 rend ​= ​"visible" ​ rendition ​= ​"Line" ​ ulx ​= ​"261" ​ uly ​= ​"156"

 xml:id ​= ​"VB_line_104v_01" ​/>
 <zone ​ corresp ​= ​"#VB_lb_104v_02" ​ lrx ​= ​"1072" ​ lry ​= ​"263"

rend ​= ​"visible" ​ rendition ​= ​"Line" ​ ulx ​= ​"257" ​ uly ​= ​"209"
 xml:id ​= ​"VB_line_104v_02" ​/>
 ​[...]
 ​<zone ​ corresp ​= ​"#VB_lb_104v_23" ​ lrx ​= ​"1084" ​ lry ​= ​"1318"

rend ​= ​"visible" ​ rendition ​= ​"Line" ​ ulx ​= ​"262" ​ uly ​= ​"1269"
 xml:id ​= ​"VB_line_104v_23" ​/>
 ​<zone ​ corresp ​= ​"#VB_lb_104v_24" ​ lrx ​= ​"1104" ​ lry ​= ​"1372"

end ​= ​"visible" ​ rendition ​= ​"Line" ​ ulx ​= ​"260" ​ uly ​= ​"1316"
 xml:id ​= ​"VB_line_104v_24" ​/>
</surface>

For more information about digital facsimiles in TEI XML see chapter ​11 Representation

of Primary Sources​ of the TEI ​Guidelines​.

3.2.2 Parallel Transcription
The ​Parallel Transcription ​method is the most popular and recommended way to couple a
(semi-)diplomatic transcription with digitized manuscript images. This is what EVT expects
to find in a TEI XML document created according to this method:

• To provide a safe starting point for the parsing of the TEI document it is essential that

each ​<text> includes an ​xml:id attribute holding an unique ID for the text: if you
forget to include this attribute EVT will create one automatically, but it is surely
preferable to have it, possibly within a project-wide naming schema, from the start for
all your ​<text> elements. Also, while not mandatory, it is highly recommended to
add an ​n attribute holding the text title, so that it can be showed in the appropriate
selector in the web edition; if ​n is not available, ​xml:id will be used removing the
underscore characters (in other words, results may be acceptable but not always pretty
…). Other elements may be used as necessary per specific needs, f.i. ​type to record
if the text is in prose or verse, but they aren’t relevant for EVT. Example:

<text ​ n ​= ​"The Dream of the Rood" ​ type ​= ​"verse"

 ​xml:id ​= ​"DOTR" ​>

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/PH.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/PH.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/PH.html#PH-bov
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/PH.html#PH-bov

• <pb/> elements are used to mark up folio sides: they must include the ​n and

xml:id attributes, respectively to show the correct folio number and to enable
text-image linking at the page level; more in detail, the ​n is the label you will see in
the page selector in the web interface, so you are relatively free to choose the
characters that you put in it, while the ​xml:id is a unique identifier used to recover
the text and image of each page: you can’t have two identical values for ​xml:id in
your file, while you can have two or more identical ​n attributes. For the image-text
linking at page level to work properly, it is necessary to add a ​facs attribute pointing
to the corresponding image file:

<pb ​ n ​= ​"104v" ​ xml:id ​= ​"VB_fol_104v"

 facs="data/images/single/VB_fol_104v.jpg" ​/>

Important​: at the present moment, when creating a diplomatic edition and selecting
the diplomatic and/or interpretative edition levels as available (see above the
configuration section) it is mandatory to have ​at least a ​<pb/> at the beginning of the
transcription.

• <lb/> elements are used to mark up manuscript lines: they must include the ​n and
xml:id attributes, respectively for line numbering and text-image linking at the line
level; ​xml:id only serves the purpose of text-image linking so you can omit it if
you’re not going to take advantage of this feature.

<lb ​ facs ​= ​"#VB_line_104v_07" ​ n ​= ​"7"

 xml:id ​= ​"VB_lb_104v_07" ​/>

<lb/>​s with no attributes (or an ​<lb rend="empty"/> element) will be
rendered as empty lines. Note that you can have numbered empty lines, but again this
works if you add the ​n​ attribute:

<lb ​ n ​= ​"1" ​/>
<lb ​ n ​= ​"2" ​/>
<lb ​ n ​= ​"3" ​/>

3.3.3 Support for named entities
Support for named entities is a feature originally introduced in EVT 1 and now available

in EVT 2 as well. To best take advantage of this feature, it is necessary to prepare lists that

will be included in an appropriate location, at the present moment EVT supports the
<sourceDesc>​ element within the ​<teiHeader>​.

One likely candidate is a list of persons, as in this example (selected from the Codice
Pelavicino digital edition):

<listPerson>

 <person​ xml:id​=​"AccursetusVitalis"​>
 <persName>

 <forename>​Accursetus​</forename>
 <surname>​quondam Vitalis de castro Sarzane​</surname>
 </persName>

 <sex>​M​</sex>
 </person>

 <person​ xml:id​=​"AcoltusBonavite"​>
 <persName>

 <forename>​Acoltus​</forename>
 <surname>​quondam Bonavite de Trebiano​</surname>
 </persName>

 <sex>​M​</sex>
 </person>

 <person​ xml:id​=​"Adiutus"​>
 <persName>

 <forename>​Adiutus/Aiutus​</forename>
 </persName>

 <sex>​M​</sex>
 </person>

 <person​ xml:id​=​"Adiutuscap"​>
 <persName>

 <forename>​Adiutus / Aiutus​</forename>
 </persName>

 <sex>​M​</sex>
 <occupation​ n​=​"2"​>​presbiter, capellanus domini Guilielmi​</occupation>
 </person>

 <person​ xml:id​=​"Adiutusnot"​>
 <persName>

 <forename>​Adiutus / Aiutus​</forename>
 </persName>

 <sex>​M​</sex>
 <occupation​ n​=​"1"​>​sacri palatii notarius​</occupation>
 </person>

 <person​ xml:id​=​"Adornellusnot"​>
 <persName>

 <forename>​Adornellus​</forename>
 <surname>​domini Tranchedi comitis de Advocatis de Luca​</surname>
 </persName>

 <sex>​M​</sex>
 <occupation​ n​=​"2"​>​iudex ordinarius, notarius​</occupation>

 </person>

[...]

</listPerson>

Note that every ​<person> item relates to an individual, in this case historical figures, but

they might as well be fictional characters. Another useful list may one of places (again from
the CPD edition):

<listPlace>

 <place​ xml:id​=​"Aciliano"​>
 <settlement​ type​=​"località"​>​Aciliano​</settlement>
 </place>

 <place​ xml:id​=​"Acola"​>
 <settlement​ type​=​"località"​>​Acola​</settlement>
 </place>

 <place​ xml:id​=​"Agina"​>
 <settlement​ type​=​"località"​>​Agina​</settlement>
 </place>

 <place​ xml:id​=​"Alione"​>
 <settlement​ type​=​"località"​>​Alione​</settlement>
 </place>

 <place​ xml:id​=​"Alpes"​>
 <settlement​ type​=​"monte"​>​Alpes​</settlement>
 <placeName​ type​=​"new"​>​Alpi Apuane​</placeName>
 </place>

[...]

<listPlace>

At the present moment, EVT supports the following list elements for the purpose of named

entity annotation and linking:

● <listPerson>

● <listPlace>

● <listOrg>

Note that the TEI schemas offer other specific list elements, such as ​<listNym> for the

canonical form of names, or ​<listEvent> for historical events, but it is also possible to
use the generic ​<list> element to provide for other needs (you only have to specify a value
for ​type to make explicit what kind of items are gathered in a list), provided that all the lists
are related to individual “objects”. Future versions of EVT may support other types of list,
including the generic one, but at the moment only those specified above are supported.

Once the lists are ready, you can link each occurrence of an item to the corresponding list
entry using the ​ref attribute for elements such as ​<persName> (→ ​<listPerson>​) and

<placeName> (→ ​<listPlace>​). As a value for each ​ref you will have to use the
xml:id​ of the corresponding item in a list:

<p​ xml:id​=​"CCLXXXXII_p_003"​ n​=​"3"​><ptr​ target​=​"CCLXXXXII_st_001"
facs​=​"#st_279r_001"​/>​ Ego ​<persName​ ​ref​=​"#Adiutusnot"​>​Adiutus,
<roleName>​sacri palacii notarius​</roleName></persName>​, hiis interfui et
de mandato suprascripti domini episcopi hanc cartam abreviavi et in

publicam

formam redegi, signum et nomen proprium apponendo.​</p>

Edition levels
Different edition levels in the same TEI document are managed through a combination of
transcriptional and editorial elements:

● the diplomatic level is encoded using the ​<damage>​, <hi>​, <abbr>​+​<am> and

<orig> elements; at the character level, if a <charDecl> is present, using the
<mapping type="diplomatic"> character values inside each <char> (or
<glyph>) element;

● the ​interpretative level is encoded using the ​<supplied>​, <​expan​>+<​ex​> and
<​reg​> elements; at the character level, if a ​<charDecl> is present, using the

<mapping type="normalized"> character values inside each <char> (or

<glyph>​) element; <sic>/<corr> pairs are possible, but not necessary if a full
critical edition is envisaged.

Note that all the editorial elements are usually inserted in <choice> elements: this is

mandatory for word-level pairs.

Full example:

 ​ ​<text>
 ​<body>
 ​<div​ n​=​"DOTR"​ subtype​=​"edition_text"​ type​=​"verse"​ xml:id​=​"DOTR"​>
 ​<pb​ n​=​"104v"​ xml:id​=​"VB_fol_104v"​/>
 ​<l​ n​=​"1"​><lb​ facs​=​"#VB_line_104v_07"​ n​=​"7"​ xml:id​=​"VB_lb_104v_07"​/>

<hi​ rend​=​"init3.1"​><g​ ref​=​"#Hunc"​/></hi>
<hi​ rend​=​"cap"​>​W​</hi>​æt ic
<g​ ref​=​"#slong"​/>​wefna c​<g​ ref​=​"#ydot"​/>
<g​ ref​=​"#sins"​/>​t secgan wylle​</l>

<l​ n​=​"2"​><choice>
<sic>​hæt​</sic>

 ​<corr​ resp​=​"Grein"​>​hwæt​</corr>
 ​</choice>

 ​<choice>
 ​<orig>​mege mætte​</orig>
 ​<reg>​me gemætte​</reg>
 ​</choice>

<lb​ facs​=​"#VB_line_104v_08"​ n​=​"8"​ xml:id​=​"VB_lb_104v_08"​/>
to midre nihte​</l>

 <​l​ n​=​"3"​>​syðþan​ <choice>
 ​<orig>​reord b​<g​ ref​=​"#eenl"​/>​r​<g​ ref​=​"#eenl"​/>​nd​</orig>
 ​<reg>​reordberend​</reg>
 ​</choice>​ reste wunedon​<orig><pc
type​=​"metrical"​>​.​</pc></orig></l>
 ​<l​ n​=​"4"​><lb​ facs​=​"#VB_line_104v_09"​ n​=​"9"
xml:id​=​"VB_lb_104v_09"​/>​þuhte me þæt ic​ <choice>
 ​<orig>​ge​ <g​ ref​=​"#sins"​/>​awe​</orig>
 ​<reg>​gesawe​</reg>
 ​</choice>
 ​<g​ ref​=​"#sins"​/>​yllicre treow​</l>

[…]

 ​<l​ n​=​"156"​>​ælmihtig​ <name​ type​=​"religion"​><choice>
 ​<orig>​god​</orig>
 ​<reg>​God​</reg>
 ​</choice></name>​ þær hi​<g​ ref​=​"#sins"​/>​ eðel wæ​<g​ ref​=​"#sins"​/>
 ​<g​ ref​=​"#colmidcomposit"​/></l>
 ​</div>
 ​</body>
 </text>

3.4 Critical editions

EVT accepts critical editions encoded according to the parallel segmentation method. Initial
support for the double-end-point attached method has been recently added, but it is very
much experimental at this moment.

See section 2.2 for a description of the configuration options related to critical editions.

4. Other features

4.1 VisColl: describing and visualizing the manuscript quire structure

EVT 2 beta2 introduces a new and very interesting feature: support for ​VisColl​, a software
tool aiming at building models of the physical collation of manuscripts, and then visualizing
them in various ways. While not based on the TEI schemas and guidelines, VisColl is based
on XML documents to describe the manuscript quire structure and on XSLT style sheets to

https://github.com/leoba/viscoll

create dynamic representations of such structure using SVG pictures combined with
manuscript folios miniatures. Since VisColl is open source software, the EVT development
team managed to adapt the XSLT style sheets so that they could be integrated in EVT build
chain.

To show the quire structure of a manuscript using VisColl and EVT you have to prepare
two different files:

● an XML file describing such structure according to the VisColl data model 1

(Collation Model);
● an XML file holding a list of the manuscript images (Image List).

Both quire description and image list can be prepared by hand, VisColl makes use of a

custom XML schema which is quite simple, see the examples below. As an alternative, you
can follow the instructions available on its ​home page​, see the ​How To​ page.

This is an example of a manuscript quire description (Collation Model) based on the
Vercelli Book codex:

<quires>

<quire ​ n ​= ​"1" ​ xml:id ​= ​"VB-q-1" ​> ​1 ​</quire>
<quire ​ n ​= ​"2" ​ xml:id ​= ​"VB-q-2" ​> ​2 ​</quire>
<quire ​ n ​= ​"3" ​ xml:id ​= ​"VB-q-3" ​> ​3 ​</quire>
<quire ​ n ​= ​"4" ​ xml:id ​= ​"VB-q-4" ​> ​4 ​</quire>
<quire ​ n ​= ​"5" ​ xml:id ​= ​"VB-q-5" ​> ​5 ​</quire>
<quire ​ n ​= ​"6" ​ xml:id ​= ​"VB-q-6" ​> ​6 ​</quire>
<quire ​ n ​= ​"7" ​ xml:id ​= ​"VB-q-7" ​> ​7 ​</quire>
<quire ​ n ​= ​"8" ​ xml:id ​= ​"VB-q-8" ​> ​8 ​</quire>
<quire ​ n ​= ​"9" ​ xml:id ​= ​"VB-q-9" ​> ​9 ​</quire>
<quire ​ n ​= ​"10" ​ xml:id ​= ​"VB-q-10" ​> ​10 ​</quire>
<quire ​ n ​= ​"11" ​ xml:id ​= ​"VB-q-11" ​> ​11 ​</quire>
<quire ​ n ​= ​"12" ​ xml:id ​= ​"VB-q-12" ​> ​12 ​</quire>
<quire ​ n ​= ​"13" ​ xml:id ​= ​"VB-q-13" ​> ​13 ​</quire>
<quire ​ n ​= ​"14" ​ xml:id ​= ​"VB-q-14" ​> ​14 ​</quire>
<quire ​ n ​= ​"15" ​ xml:id ​= ​"VB-q-15" ​> ​15 ​</quire>
<quire ​ n ​= ​"16" ​ xml:id ​= ​"VB-q-16" ​> ​16 ​</quire>
<quire ​ n ​= ​"17" ​ xml:id ​= ​"VB-q-17" ​> ​17 ​</quire>
<quire ​ n ​= ​"18" ​ xml:id ​= ​"VB-q-18" ​> ​18 ​</quire>
<quire ​ n ​= ​"19" ​ xml:id ​= ​"VB-q-19" ​> ​19 ​</quire>

</quires>

[...]

<leaf ​ xml:id ​= ​"VB-14-1" ​>
<folioNumber ​ certainty ​= ​"1" ​ val ​= ​"99" ​> ​99 ​</folioNumber>
<mode ​ certainty ​= ​"1" ​ val ​= ​"original" ​></mode>
<q ​ leafno ​= ​"1" ​ n ​= ​"14" ​ position ​= ​"1" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-8" ​></conjoin>

https://viscoll.org/
https://viscoll.org/how-to/

</q>

</leaf>

<leaf ​ xml:id ​= ​"VB-14-2" ​>
<folioNumber ​ certainty ​= ​"1" ​ val ​= ​"100" ​> ​100 ​</folioNumber>
<mode ​ certainty ​= ​"1" ​ val ​= ​"original" ​></mode>
<q ​ leafno ​= ​"2" ​ n ​= ​"14" ​ position ​= ​"2" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-7" ​></conjoin>
</q>

</leaf>

<leaf ​ xml:id ​= ​"VB-14-3" ​>
<mode ​ certainty ​= ​"1" ​ val ​= ​"missing" ​></mode>
<q ​ leafno ​= ​"3" ​ n ​= ​"14" ​ position ​= ​"3" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-6" ​></conjoin>
</q>

</leaf>

<leaf ​ xml:id ​= ​"VB-14-4" ​>
<folioNumber ​ certainty ​= ​"1" ​ val ​= ​"101" ​> ​101 ​</folioNumber>
<mode ​ certainty ​= ​"1" ​ val ​= ​"original" ​></mode>
<q ​ leafno ​= ​"4" ​ n ​= ​"14" ​ position ​= ​"4" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-5" ​></conjoin>
</q>

</leaf>

<leaf ​ xml:id ​= ​"VB-14-5" ​>
<folioNumber ​ certainty ​= ​"1" ​ val ​= ​"102" ​> ​102 ​</folioNumber>
<mode ​ certainty ​= ​"1" ​ val ​= ​"original" ​></mode>
<q ​ leafno ​= ​"5" ​ n ​= ​"14" ​ position ​= ​"5" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-4" ​></conjoin>
</q>

</leaf>

<leaf ​ xml:id ​= ​"VB-14-6" ​>
<folioNumber ​ certainty ​= ​"1" ​ val ​= ​"103" ​> ​103 ​</folioNumber>
<mode ​ certainty ​= ​"1" ​ val ​= ​"original" ​></mode>
<q ​ leafno ​= ​"6" ​ n ​= ​"14" ​ position ​= ​"6" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-3" ​></conjoin>
</q>

</leaf>

<leaf ​ xml:id ​= ​"VB-14-7" ​>
<mode ​ certainty ​= ​"1" ​ val ​= ​"missing" ​></mode>
<q ​ leafno ​= ​"7" ​ n ​= ​"14" ​ position ​= ​"7" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-2" ​></conjoin>
</q>

</leaf>

<leaf ​ xml:id ​= ​"VB-14-8" ​>
<folioNumber ​ certainty ​= ​"1" ​ val ​= ​"104" ​> ​104 ​</folioNumber>
<mode ​ certainty ​= ​"1" ​ val ​= ​"original" ​></mode>
<q ​ leafno ​= ​"8" ​ n ​= ​"14" ​ position ​= ​"8" ​ target ​= ​"#VB-q-14" ​>
<conjoin ​ certainty ​= ​"1" ​ target ​= ​"#VB-14-1" ​></conjoin>
</q>

</leaf>

[...]

While this is the corresponding image list:

<imageList>

[...]

<imagerv>

<image ​ val ​= ​"104v" ​ url ​= ​"data/images/single/VB_fol_104v.jpg"
id ​= ​"VB-14-8-v" ​> ​104v ​</image>
</imagerv>

<imagerv>

<image ​ val ​= ​"105r" ​ url ​= ​"data/images/single/VB_fol_105r.jpg"
id ​= ​"VB-15-1-r" ​> ​105r ​</image>
<image ​ val ​= ​"105v" ​ url ​= ​"data/images/single/VB_fol_105v.jpg"
id ​= ​"VB-15-1-v" ​> ​105v ​</image>
</imagerv>

<imagerv>

<image ​ val ​= ​"106r" ​ url ​= ​"data/images/single/VB_fol_106r.jpg"
id ​= ​"VB-15-2-r" ​> ​106r ​</image>
</imagerv>

[...]

</imageList>

The quire structure description (e.g. ​VB-dataModel.xml​) and the image list (e.g.

VB-imageList.xml​) should be copied into the ​data/viscoll directory and the
complete path has to be specified in the configuration file setting the corresponding
parameters, ​visCollDataModel​ and ​visCollImageList​ (see above).

When the relevant XML files are in the appropriate place, it is necessary to execute the
VisColl stylesheet by means of an XSLT 2 processor, so that you will get the SVG diagrams
automatically and the VisColl button in the navigation bar when the Web edition is
generated. If using the Oxygen XML editor, to start the transformation it is necessary to
configure a transformation scenario providing in input the XML file (e.g.
VB-dataModel.xml​) and choosing the XSLT 2 stylesheet
(​collationXMLtoSVGmod2.xsl​), and setting the output folder (choose
data/viscoll/SVG​). Then using the “Apply selected scenarios” to execute the
transformation and generate all the SVG images in the specified folder.

Besides showing the physical structure of a manuscript binding, VisColl images can be
used as an alternative navigation tool: if you click on a thumbnail, you will be carried to that
manuscript folio image.

4.2 3DHOP

In EVT 2 beta 2 the ​3DHOP (3D Heritage Online Presenter) software has been integrated so
that it is now possible to load a 3D model into a dedicated frame and confront it with a

http://www.3dhop.net/

description and/or other related text. This is an experimental feature which will be refined
adding 3D model - edition text linking in the future.

To take advantage of this feature you will have to copy the 3D model files in the appropriate
folders (​data/models/multires and ​data/models/singleres​, visit the 3DHOP
home page to see which formats are supported) and configure EVT accordingly (see the
RC.xml document and its ​config_visionaryCross.json settings file for a sample
edition).

When testing a local instance, we recommend to use Chrome with the local file access
parameter to use the 3DHOP view.

5. Sample editions
There are several ready-to-use examples. The one used by default is n. 1.

If you want to explore the other two you will just have to open the corresponding settings file
(f.i. ​config_marlowe.json​) and save it as the main ​config.json file, overwriting
the existing configuration. Then go to the ​index.html opened in your browser and reload 2

the page!

● EXAMPLE 1: avicenna.xml - Short extract of ​Edizione Logica
Avicennae​, changed by CM for EVT testing purposes. It presents multiple levels of
apparatuses (critical entries, sources and analogues), displayed in a separate dedicated
frame. Configuration file for this edition: ​config_avicenna.json​.

● EXAMPLE 2: pseudoEdition.xml - Pseudo edition for demonstration
and testing purposes only, originally encoded by Marjorie Burghart for her TEI
Critical Toolbox software, and modified in order to cover the highest number of
possible use cases. It presents just the critical apparatus entry, displayed inline, within
the main text. Configuration file for this edition:
config_pseudoEdition.json​.

● EXAMPLE 3: pelavicino.xml - Short extract of the Codice Pelavicino
edition, which presents the encoding of named entities, in particular person, place and
organization names. Configuration file for this edition:
config_pelavicino.json​.

● EXAMPLE 4: ​marlowe.xml - Short extract of ​The Tragedie of Doctor Faustus (B
text) by Christopher Marlowe. Text provided by Perseus Digital Library, with funding
from Tufts University. Original version available for viewing and download at
http://www.perseus.tufts.edu/hopper/​. Configuration file for this edition:
config_marlowe.json​.

2 Note that EVT only looks at ​config.json to load settings, all other files in the ​config folder are ignored
and are used to make available ready-to-use configuration for the sample edition files.

http://www.perseus.tufts.edu/hopper/

● EXAMPLE 5: ​RC.xml - An experimental edition of the Ruthwell Cross to test the
3DHOP functionality recently added to EVT. Configuration file for this edition:
config_visionaryCross.json​.

Feedback
User feedback is very much appreciated: please send all comments, suggestions, bug reports,
etc. to ​evt.developers@gmail.com​.

References
Di Pietro, Chiara, and Roberto Rosselli Del Turco. “Between Innovation and Conservation: The

Narrow Path of User Interface Design for Digital Scholarly Editions.” ​Digital Scholarly Editions

as Interfaces​, vol. 12, BoD, 2018, pp. 133–63. ​kups.ub.uni-koeln.de​,

https://kups.ub.uni-koeln.de/9085/​.

Monella, Paolo, and Roberto Rosselli DelTurco. “Extending the DSE: LOD Support and TEI/IIIF

Integration in EVT.” ​Umanistica Digitale​, 2020, p. 10. ​http://amsacta.unibo.it/6316/​.

Rosselli Del Turco Roberto. ​EVT Development: An Update (and Quite a Bit of History)​. 2014,

https://visualizationtechnology.wordpress.com/2014/01/26/evt-development-an-update-and-quite

-a-bit-of-history/​.

Roberto Rosselli Del Turco, et al. “Edition Visualization Technology: A Simple Tool to Visualize

TEI-Based Digital Editions.” ​JOURNAL OF THE TEXT ENCODING INITIATIVE​, no. Issue 8,

2015, pp. 1–21, doi:​10.4000/jtei.1077​.

Rosselli Del Turco, Roberto, et al. “Progettazione e implementazione di nuove funzionalità per EVT

2: lo stato attuale dello sviluppo.” ​Umanistica Digitale​, no. 7, 2019, pp. 5–21.

umanisticadigitale.unibo.it​, doi:​10.6092/issn.2532-8816/9322​.

Rosselli Del Turco, Roberto. “Designing an Advanced Software Tool for Digital Scholarly Editions:”

Textual Cultures​, vol. 12, no. 2, Aug. 2019, pp. 91–111. ​DOI.org (Crossref)​,

doi:​10.14434/textual.v12i2.27690​.

mailto:evt.developers@gmail.com
https://kups.ub.uni-koeln.de/9085/
https://kups.ub.uni-koeln.de/9085/
http://amsacta.unibo.it/6316/
https://visualizationtechnology.wordpress.com/2014/01/26/evt-development-an-update-and-quite-a-bit-of-history/
https://visualizationtechnology.wordpress.com/2014/01/26/evt-development-an-update-and-quite-a-bit-of-history/
https://doi.org/10.4000/jtei.1077
https://doi.org/10.6092/issn.2532-8816/9322
https://doi.org/10.14434/textual.v12i2.27690

